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Non-monotonic Poisson Likelihood Maximization

Suvrit Sra, Dongmin Kim, and Bernhard Schölkopf

Abstract. This report summarizes the theory and some main applications of a new non-monotonic algorithm for
maximizing a Poisson Likelihood, which for Positron Emission Tomography (PET) is equivalent to minimizing
the associated Kullback-Leibler Divergence, and for Transmission Tomography is similar to maximizing the dual
of a maximum entropy problem. We call our method non-monotonic maximum likelihood (NMML) and show
its application to different problems such as tomography and image restoration. We discuss some theoretical
properties such as convergence for our algorithm. Our experimental results indicate that speedups obtained via our
non-monotonic methods are substantial.
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1 Introduction
Several physical phenomena involve count-processes that are often modeled using Poisson distributions. Typical
examples include physical processes where elementary particles such as electrons or photons are emitted and sub-
sequently measured by detectors after they have travelled some distance. Numerous other common situations can
also benefit from modeling data using Poisson distributions. For example, modeling web-server access statistics,
tomography, image deconvolution and restoration, distribution of visual receptors in the retina, modeling num-
ber of mutations in DNA, and statistical inference, to name a few—the Wikipedia article [41] lists several more
interesting scenarios.

1.1 Background
At an abstract level, consider that we have made non-negative measurements y1, . . . , yn that may denote frequen-
cies, projection counts, image intensities or other such quantities. Now assume that each of measurement yi is
generated via a Poisson process with mean parameter [Axi], where the matrix (or operator) A describes how the
“true” underlying parameters x are related to each other (Amay be viewed as an operator that convolves x to yield
the mean parameters). For example, the matrix A may model probabilities of a certain region in space emitting a
particle that gets detected by a particular detector—thereby, determining how the count measurements are actually
generated. Then, we may write this relationship as

yi ∼ Poisson([Ax]i).

This model is naturally highly simplified, and depending on the application characteristics, richer or more diverse
models may be considered. Later on in this report we will describe similar models with varying details depending
on the problem.

1.1.1 Poisson Maximum Likelihood
Assuming the measurements y to be i.i.d., the Poisson likelihood of observing y given underlying parameters x

(that are themselves non-negative for all our applications of interest), is given by

P (y|x) =
n∏
i=1

e−[Ax]i
[Ax]yi

i

yi!
. (1.1)

Maximizing the likelihood (1.1) w.r.t. to x ≥ 0 is equivalent to solving

max
x≥0

n∑
i=1

yi log[Ax]i − [Ax]i, (1.2)

dropping constants for brevity. For the well-known problem of image reconstruction in Positron Emission Tomog-
raphy (PET) this formulation was proposed and solved by an EM-based algorithm in [38].

We can rewrite (1.2) as the equivalent minimization problem

min
x≥0

f(x) = KL(y;Ax) =
∑
i

yi log
yi

[Ax]i
− yi + [Ax]i, (1.3)

where KL denotes the unnormalized Kullback-Leibler divergence, and y ∈ Rn+ and A ∈ Rn×p+ are inputs. Prob-
lem (1.3) is a convex optimization problem and in this report we derive a new method for solving it. We also show
several important applications and extensions of our method beyond just PET.

Regularized ML. In practice, one does not solve (1.3) directly but rather incorporates a penalty term that en-
forces smoothness or serves to incorporate prior knowledge. The resulting optimization problem is

min
x≥0

KL(y;Ax) + βR(x), (1.4)

where β > 0 is a penalty parameter and R(x) is a regularizing function. Several choices of R(x) have been
studied in the literature, for e.g., R(x) = 1

2‖x‖
2 is the traditional energy penalty, while R(x) = 1

2‖Cx‖
2

where C is a finite-differencing matrix provides a first-order roughness penalty. For our algorithm, we only make
the requirement that R(x) be a differentiable convex function of x. To avoid clutter, we omit R(x) from the
discussion, noting that it can be easily included as long as it satisfies the abovementioned properties.
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1.2 Related Work

Problem (1.3) is a simple convex optimization problem, which is especially appealing because of the simple non-
negativity constraints. All the applications that we will consider in this report will be essentially of this type—
having a convex objective function subject to non-negative constraints. Owing to this simplicity, all of these
problems may be in principle solved by modern convex optimization methods. However, generic off-the-shelf
software often fails to take advantage of the problem structure or may simply not scale to the problem sizes that
we will study in this report. We mention below some typical approaches for solving (1.3) and related problems,
noting that application specific related work will be described when we discuss the application.

One of the simplest approaches to solving (1.3) and other similar non-negatively constrained problems would
be the projected gradient method of [36], which is a simple and scalable method. However, it is also known that
the projected gradient method inherits deficiencies such as slow-convergence from the steepest-descent method.
Significant effort has been invested into methods that promise to overcome such deficiencies and quasi-Newton
methods are amongst the most successful. The LBFGS-B method of [7], which is an extension of L-BFGS [29] to
box-constrained problems is an example of such a procedure. Traditional quasi-Newton methods based on BFGS
or Newton methods that require the full Hessian matrix do not scale to the problem sizes considered in this report,
and are hence excluded from discussion.

It is not surprising that for all the applications that we discuss in this paper, the associated research communities
have developed their own set of methods, each tuned to the specific optimization problem at hand. What is more
surprising is that methods grounded in modern optimization theory, such as LBFGS-B or the methods that we
derive in this report, handily outperform most of the specific methods still in use in communities alluded to above.

In theoretical and practical spirit, the work closest to this report is our recent report [22], where we discuss a
similar non-monotonic method applied to the non-negative least squares problem. In this report, we deal with the
Kullback-Leibler divergence and some other related objective functions. These more sophisticated applications
are naturally accompanied by associated new theory and experiments.

2 Theory and Algorithm

We now describe our solution to (1.3), which we will also extend naturally to other related objective functions. At
a high-level, one could view our approach as a specially modified projected gradient method, which overcomes
some typical drawbacks of projected-gradient by exploiting the non-monotonic descent procedure of Barzilai and
Borwein (BB) [2]. Our approach is based on a similar extension of the BB idea to the non-negative least-squares
problem [22].

More specifically, projected-gradient has three main ingredients. First, is the gradient of the objective function,
second is a line-search to determine the step-size to use for descent, and the third is the projection step to enforce the
constraints. The line-search step can often add substantial running time costs to the method, but in general it seems
to be indispensable if one wants to prove convergence guarantees for the resulting algorithm. The main benefit
of the BB approach is a closed-form solution to the step-size, thereby circumventing the potentially expensive
line-search step. However, our problem (1.3) is constrained as opposed to the unconstrained scenario considered
by [2], a naı̈ve combination of the BB step-size with the projected-gradient approach will not yield a convergent
procedure [22]. To develop a convergent algorithm without sacrificing efficiency, some crucial modifications are
necessary, and these are described below.

2.1 Algorithm

Forming the Lagrangian of (1.3) and differentiating, we obtain the KKT optimality conditions

∇f(x)− λ = 0, λixi = 0 ∀i, λ,x ≥ 0. (2.1)

Now, consider the active variables, i.e., the variables that are zero at the optimum (x∗i = 0). At any given iteration
we can keep track of the currently active variables as an approximation to the final set of active variables, while
minimizing the objective by turning an active variable into an inactive one or vice versa. Indeed, this scheme lies
at the heart of active set methods [3]. However, such schemes can be slow and may under utilize the information
available. We refine the active set and replace it by a fixed set of variables, which exploits the complementary
slackness condition λixi = 0 in (2.1). If a given xi = 0, then its corresponding λi ≥ 0, and in fact if λi > 0 then
[∇f(x)]i > 0 must hold. Hence, we define:
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Definition 1 (Fixed-set). The Fixed-Set at iteration k is defined to be a subset of the (indices of) active-variables
that have a positive gradient. That is,

Ik+ = {i|xki = 0, [∇f(xk)]i > 0}. (2.2)

Given that we have a candidate fixed set of variables, we optimize over the free variables. At this point, any
generic unconstrained minimization method with line-search could be applied. However, as previously suggested,
the line-search step often turns out to be a bottleneck. In addition, if the generic method of choice were a sec-
ond order method, then the memory requirements rapidly become prohibitive. Thus, we depart from the generic
constrained minimization setup and replace the step-size computation by closed-form computations. This cir-
cumvention of the potentially expensive line-search step leads to a considerable simplification to the algorithm
and associated gains in computational efficiency. It is important to note that the exact form of the step-size is
determined by performing descent over only the free variables.

Formally, let sk = xk−xk−1, and yk = gk−gk−1. In contrast to what an out-of-the-box invocation of the BB
method would do, we compute step-sizes using only the “free” parts of sk and yk. Additionally, we incorporate
a positive sequence of parameters βk such that limk βk = 0 and limk

∑
k βk = ∞, that rescale the step-sizes αk.

Finally, a user-defined upper bound on the step-sizes is included to ensure that the step-sizes remain bounded and
to prevent pathological behavior. In practice, however, we have not found it necessary to include either βk or τ ,
thereby considerably alleviating the parameter selection burden.

Let Z+(x) denote the vector [Z+(xi)], where Z+(xi) = 0 for i ∈ I+, and xi otherwise. With the introduction
of this zero-out operator, we can now display the step-size computations:

sk ← Z+(sk), yk ← Z+(yk)

αk = βk min
{
〈sk, sk〉
〈sk,yk〉

, τ

}
, or αk = βk min

{
〈sk,yk〉
〈yk,yk〉

, τ

}
.

(2.3)

The updates (2.3) are our adapted version of BB-type updates and it is important to note that they operate on
only the free-variables. These updates may be viewed as scalar solutions to the quasi-Newton secant equation that
arises, or in other words as Rayleigh quotients corresponding to an appropriate interpolated Hessian matrix [22].

Given the step-sizes (2.3) and the current estimate of the solution xk, we have the update

xk+1 = P+(xk − αkgk), (2.4)

where P+(x) = max(0, x) projects onto the non-negative orthant to ensure constraints satisfaction.
All these details mentioned above are incorporated into Algorithm 1.
We now proceed onto analyzing important theoretical properties of Algorithm 1 in the next section.

2.2 Theoretical Analysis
Now we analyze some theoretical properties of the algorithm including convergence. In general, for a differentiable
function f , the only subgradient of f at xk is the gradient itself. However, we show that Algorithm 1 with the
special constraint x ≥ 0, generates a subgradient around xk that differs from the gradient.
Lemma 2.1 (Subgradient Property). A chopped gradient

gk = Z+

(
∇f(xk)

)
is a subgradient of f around xk.

Proof. Since f is convex and differentiable, its Taylor expansion at xk yields

f(z) ≥ f(xk) +
〈
∇f(xk), z − xk

〉
.

Hence,
f(z)− f(xk)−

〈
gk, z − xk

〉
≥
〈
∇f(xk)− gk, z − xk

〉
.

Since [∇f(xk)]i > 0 for i ∈ I+ and z ≥ 0,〈
∇f(xk)− gk, z − xk

〉
=
∑
i∈I+

[∇f(xk)]i × zi ≥ 0.

Therefore, for all z ≥ 0, we obtain f(z) ≥ f(xk) +
〈
gk, z − xk

〉
.
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Input: y: count data,A: system matrix, τ : control param
Output: x = argminx≥0 f(x) = KL(y;Ax)
Initialize k ← 1, x0 ∈ Rn++, g0 = ∇f(x0);
x1 ← P+(x0 − α0g

0) for some α0 > 0;
(choose α0 s.t. f(x1) < f(x0));
repeat

gk = Z+

(
∇f(xk)

)
;

Compute fixed set I+ =
{
i
∣∣xki = 0, [gk]i > 0

}
;

yk ← Z+(gk − gk−1) {Zero out gradient};
sk ← Z+(xk − xk−1) {Zero out variables};
if k mod 2 = 0 then

αk ← βk min{〈sk, sk〉 / 〈sk,yk〉 , τ};
end
else

αk ← βk min{〈sk,yk〉 / 〈yk,yk〉 , τ};
end
xk+1 ← P+(xk − αkgk);
k ← k + 1;

until Stopping Criteria are met ;
Algorithm 1: Non-monotonic maximum likelihood

Now, for notational convenience, let us define the best objective value so far, i.e.,

f̄k = min
{
f̄k−1, f(xk)

}
.

To prove the main theorem we exploit some ideas from the proof of the subgradient method [39], and using the
following nonexpansive property of the projection step we obtain our final proof.

Lemma 2.2 (Nonexpansive Property of Projection). For all x, z,

‖P+(x)− P+(z)‖2 ≤ ‖x− z‖2.

Proof. Refer to Proposition B.11 (C) in [3].

Theorem 2.3 (ε-optimal Convergence). If f∗ denotes the optimal solution to (1.3), and αk is bounded above, there
exists a constant ε s.t.,

lim
k→∞

f̄k − f∗ < ε.

Proof. Using Lemma 2.2 and since P+(x∗) = x∗, we have

‖xk+1 − x∗‖22 = ‖P+(xk − αkgk)− P+(x∗)‖22 ≤ ‖xk − αkgk − x∗‖22
= ‖xk − x∗‖22 − 2αk

〈
gk,xk − x∗

〉
+ α2

k‖gk‖22
≤ ‖xk − x∗‖22 − 2αk

(
f(xk)− f∗

)
+ α2

k‖gk‖22
≤ ‖x1 − x∗‖22 − 2

∑
k

αk
(
f(xk)− f∗

)
+
∑
k

α2
k‖gk‖22.

Consequently,
2
∑
k

αk
(
f(xk)− f∗

)
≤ ‖x1 − x∗‖22 +

∑
k

α2
k‖gk‖22.

Further consider the following,∑
k

αk
(
f(xk)− f∗

)
≥
(∑

k

αk

)
min
k

(
f(xk)− f∗

)
=
(∑

k

αk

)(
f̄k − f∗

)
,
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then we obtain

2
(∑

k

αk

)(
f̄k − f∗

)
≤ ‖x1 − x∗‖22 +

∑
k

α2
k‖gk‖22,

f̄k − f∗ ≤
‖x1 − x∗‖22 +

∑
k α

2
k‖gk‖22

2
∑
k αk

. (2.5)

Now since f is Lipschitz continuous, there exists some constant L such that

‖gk‖2 ≤ ‖∇f(xk)‖2 ≤ L.

Depending upon the choice of diminishing sequence βk, there exist two possible convergence scenarios. First,
suppose

∑∞
k=1 αk = m, then we also have

∑∞
k=1 α

2
k = n, since αk > 0. Substituting the bound on the gradient

and the assumption of αk into (2.5), and taking limits we obtain

lim
k→∞

f̄k − f∗ ≤ lim
k→∞

‖x1 − x∗‖22 +
∑
k α

2
k‖gk‖22

2
∑
k αk

=
‖x1 − x∗‖22 + nL2

2m
= ε,

thereby proving the main claim of the theorem.
When the αk sequence is not bounded, then using the forcing sequence βk we can still obtain convergence to

the optimal. Thus, supposing that the sum
∑∞
k=1 αk =∞, from Algorithm 1 we have αk ≤ βkτ at each iteration

k. Furthermore, since limk→∞ βk = 0
lim
k→∞

αk ≤ lim
k→∞

βkτ = 0.

Since limk→∞ αk = 0, given an arbitrary ε > 0, there exists an integer N1 such that

αk ≤
ε

L2
,

for all k > N1. Further, since
∑∞
k=1 αk =∞, there exists an integer N2 such that

k∑
i=1

αi ≥
1
ε

(
‖x1 − x∗‖22 + L2

N1∑
i=1

α2
i

)
for all k > N2. Let N = max{N1, N2}. Then for all k > N ,

f̄k − f∗ ≤
‖x1 − x∗‖22 + L2

(∑N
i=1 α

2
i +

∑k
i=N+1 α

2
i

)
2
(∑N

i=1 αi +
∑k
i=N+1 αi

)
=
‖x1 − x∗‖22 + L2

∑N
i=1 α

2
i

2
∑k
i=1 αi

+
L2
∑k
i=N+1 α

2
i

2
∑N
i=1 αi + 2

∑k
i=N+1 αi

≤
‖x1 − x∗‖22 + L2

∑N
i=1 α

2
i

2
ε

(
‖x1 − x∗‖22 + L2

∑N
i=1 α

2
i

) +
L2
∑k
i=N+1

ε
L2αi

2
∑k
i=N+1 αi

=
ε

2
+
ε

2
= ε.

Since ε is arbitrary, we obtain limk→∞ f̄k = f∗, concluding the proof.

3 Applications
We now describe some basic applications of our NMML algorithm and some of its simple variants. Our first
example deals with Positron Emission Tomography (PET) image reconstruction, where a Poisson model is of fun-
damental importance. Then we discuss an adaption of our method to the problem of reconstruction of attenuation
maps in Transmission Tomography—traditionally held to be an algorithmically more complicated problem than
PET reconstruction. An appropriate modification of our NMML strategy yields a new algorithm for this problem
too. We also briefly mention the problem of image restoration or deconvolution, noting some cases where our
NMML method can be effective. We would like to stress that the NMML method is fairly general, and therefore
is also applicable to situations other than those discussed below. A short list of other potential applications is
included in Section 3.4.
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3.1 Positron Emission Tomography
Image reconstruction for Poisson Emission Tomography (PET) presents an interesting and important example of
a real-world application where maximizing a Poisson likelihood arises naturally. To appreciate how this model
arises, it is useful to know a little about the underlying physical phenomena (see [38] for a nice introduction).

In PET a radionucleide that is injected into the patients’ bloodstream gradually undergoes decay releasing
positrons. These positrons travel a short distance within the body before annihilating with electrons and releasing
two oppositely traveling gamma-ray photons, which may be subsequently detected by a pair of detectors placed in
a ring around the patient. These gamma-ray photons are then assumed to be generated by a Poisson point process,
which is natural for such a radioactive phenomenon. This description is of course simplistic and ignores numerous
additional physical processes and distortions that the actual photons may undergo (e.g., attenuation, dispersion,
scattering) before they are actually detected. Such an abstract simplification is necessary not to detract from the
main theme of this paper; modeling and handling each one of these effects forms a separate research area in PET
imaging [31, 34].

Given measurements counting the number of coincidentally detected photons, the aim of image reconstruction
in PET is to estimate a function whose value is the expected number of positron emissions at each point in space
within the body. To facilitate computation one usually discretizes the problem, wherein the space is divided into p
pixels (voxels for 3-D data, or for simplicity we can just work slice by slice), and constant radioactivity within each
pixel is assumed [30, 38]. Then, one estimates the image vector x = [x1, . . . , xp]T , where each xj models the
activity in pixel j. The measurement process counts coincidences yi along n detector lines (recall detectors come in
radially placed pairs). Let aij denote the “probability” that a photon emitted by pixel j is detected by detector pair
i. Then, the coincidences yi are samples from a Poisson distribution with expected value

∑p
j=1 aijxj = [Ax]i.

Formally, we denote this as
yi ∼ Poisson([Ax]i).

A model that includes random coincidences and non-uniform calibration (see [14]) is given by

yi ∼ Poisson(ci[Ax]i + ri),

where ri denotes the mean of the accidental coincidences counted by the ith detector, and ci are certain calibration
factors reflecting calibration of the ith detector unit. For simplicity, we develop our methods with ri = 0 and
ci = 1, noting that our approach can be easily extended to handle both these cases.

Clearly, the maximum likelihood formulation described in Section 1.1.1 is immediately applicable here. Thus,
the corresponding optimization problems are (1.3) and (1.4) (penalized likelihood maximization). In fact, penal-
ized likelihood maximization is even more important in real-world PET image reconstruction because without
additional regularization, the resulting reconstructions have been observed to be very noisy (a fact that can be
partially attributed to the overly simplified Poisson model, and a crude / incompletely available system matrix).
Our methods, of course, handle both the penalized as well as unpenalized situations with equal ease. More specific
implementation details are described below in Section 3.1.2.

3.1.1 Related Work
A vast number of iterative approaches have been proposed in the PET literature for solving (1.3) and we relate

to some of the most well-known ones. Please see the surveys [31, 34] for surveys image reconstruction procedures
for PET.

Iterative methods for solving (1.3) may be roughly put into two groups. The first group consists of methods
centered around variations of the EM idea—these methods essentially bound the objective by an auxiliary function
that is easier to optimize, and they have been the most popular set of methods in the PET community. Some
examples include: (i) the basic EM based method called ML-EM or EMML [38], of which the Richardson-Lucy
method [35] is a special case, (ii) an accelerated version called ordered subsets EM (OSEM) that performs updates
with only a few rows of A at a time and trades convergence guarantees for speed [20]—the OSEM algorithm is
one of the most popular method in PET image reconstruction and is often implemented in actual PET scanners
too; (iii) several variants of the OSEM scheme and other generalizations based on EM such as C-OSEM, SAGE,
BSREM, etc. (for details and a summary of several other related methods, see [14, 34]) (iv) an extension of
EMML to deal with regularization [30]. Our work differs from all of these methods as we optimize the objective
function (1.3) directly without introducing any auxiliary functions, and it does not suffer from the slow convergence
exhibited by EM methods.
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The second group of methods includes other approaches from convex optimization. For instance, (i) a row-action
method (called RAMLA) [5] that goes through the system matrix A one row at a time, (ii) a conjugate gradient
based approach [28], (iii) a limited memory quasi-Newton approach LBFGS-B [8], or (iv) even interior-point
approaches [21]. RAMLA proceeds through the matrix A row-by-row, however, like other row-action methods
it suffers from slow convergence. Approaches based on conjugate-gradient can become slow or even ad hoc in
the presence of non-negativity constraints, while interior point methods simply do not scale to the large problem
sizes that are common in PET. The closest competitor turns out to be the LBFGS-B procedure of [8], which has
seen surprisingly little attention in the medical imaging community. However, even LBFGS-B becomes slow when
the scale of the problems increases. We remark that the LBFGS-B procedure also seems to outperform the well-
established reconstruction methods based on EM, and perhaps because of its associated implementation overhead
it has not found wide acceptance in the medical imaging community. Our method is very simple to implement,
and not only outperforms the EM based methods but also the LBFGS-B method—thereby, promising a potential
practical adoption by the community.

3.1.2 Theoretical Concerns and Algorithmic Details
The convergence proof of our algorithm required f(x) to be Lipschitz continuous. However, KL-Divergence

as such might fail to be Lipschitz continuous if we permit arbitrary inputs. Therefore, we assume that the system
matrix A is designed so that [Ax]i > 0 (such an assumption is common in the PET literature, see for e.g., [38]).
Additionally, we may assume for all practical purposes that each projection [Ax]i is lower-bounded by a constant
ε—this ensures that the resulting objective function is Lipschitz continuous and we can invoke the convergence
theory without additional problems. Even though this assumption is practically motivated, and is satisfied by real
problem, getting rid of it remains an open issue in our convergence analysis.

Computation: For f(x) = KL(y,Ax) we can simplify individual steps of the algorithm. For example, the
gradient computation

[∇f(x)]j =
∑
i

aij −
∑
i

yiaij
[Ax]i

,

can be written as
∇f(x) = AT (1− ŷ), (3.1)

where ŷ is given by the elementwise division [yi/[Ax]i]. In the language of PET image reconstruction (3.1)
requires one forward projection and one back projection—in numerical linear algebra terminology, it requires just
two matrix-vector BLAS2 operations that can be computed very efficiently, or even parallelized easily if needed.

Computational Complexity: Given the computation details above, it is easy to see that the resources required by
Algorithm 1 are modest. At each iteration computation of the gradient costs two matrix-vector products and this
cost dominates the other computations. Thus, the overall running time is O(2T · nz), i.e., where nz is number of
nonzero elements inA and T denotes the number of iterations.

3.2 Transmission Tomography

Complementary to Emission Tomography is the technique of Transmission Tomography. Here, instead of injecting
radionucleides that emit gamma rays, high-energy X-rays are streamed through a specific region of the patient’s
body and then measured by a grid of photon detectors on the other side. Different tissue types in the patient’s
body attenuate the photons differently, and it is the average attenuation rates of the different parts (voxelized) of
the body that are now the unknown quantities to be estimated. The goal is thus to construct an attenuation map for
the associated regions of the patient’s body, given just the measurements counting the number of photons along
detector lines (“line-integrals”). For simplicity of exposition we neglect details like multiple angles at which the
photons are beamed, or physical affects like scattering.

As for emission tomography we can assume the space to be divided into pixels (voxels) assuming constant
attenuation within a pixel. Let bi be the average number of photons detected by detector i when the patient is
not there in the scanner, also known as the “blank-scan factor”. When the patient is present, his body leads to
attenuation in the number of photons, so that now the mean number of photons detected at detector i may be
assumed to be

µi = bie
−
∑

j
aijxj = bie

−[Ax]i ,
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where aij denotes the length of the line of projection between the photon source and the ith detector going through
the jth pixel (voxel), and xj denotes the attenuation coefficient of the jth pixel (probability of photon attenuation
per unit length). Given this attenuation, the photons counted by each detector may be now assumed to follow a
Poisson point process with mean µi, so that we have

yi ∼ Poisson(bie−[Ax]i). (3.2)

A model that includes the effects of random coincidences is given by

yi ∼ Poisson(bie−[Ax]i + ri),

where ri denotes the mean number of background events detected by detector i.

3.2.1 Maximum Likelihood
Assuming that all the measurements yi are iid, the log-likelihood for (3.2) (ignoring constant factors) is

L(y|x) = −
∑
i

yi[Ax]i −
∑
i

bie
−[Ax]i , (3.3)

so that maximizing the log-likelihood is equivalent to solving the following minimization problem

min
x≥0

f(x) =
∑
i

yi[Ax]i +
∑
i

bie
−[Ax]i , (3.4)

which is a convex optimization problem that is similar in structure to (1.3).
We remark that in practice, we can easily incorporate the mean number of background events ri detected by

detector unit i, into our algorithm. We omit details for brevity. Also, note that with similar ease we can also
incorporate a penalization term in (3.4).

3.2.2 Related Work
Several algorithms have been developed for performing maximum likelihood reconstruction for transmission

tomography. Owing to the success of EM approaches for the emission case, EM type methods were developed for
transmission too [23]. However, several of the recent algorithms are based on direct optimization of the objective
function rather than using an EM approach [17, 27, 37]. Our algorithm also solves (3.4) directly, without resorting
to an EM type method.

As previously mentioned, for the emission tomography problem the OSEM method has enjoyed considerable
success, especially because it is simple to implement and runs quite efficiently. It is but natural to expect an
ordered-subsets variant for the transmission problem and Manglos et al. [26] presented such a method. Erdoğan
and Fessler [13] introduce a method called separable paraboloidal surrogates (SPS), which is again based on the
idea of surrogate or auxiliary functions as in EM; they then present an ordered subsets heuristic of their method,
which is claimed to accelerate the “convergence” (their method does not have any convergence guarantees, and
can be even non-monotonic). Ahn et al. [1] provides a convergent ordered subsets algorithms for transmission
tomography. Other related methods include the papers [11–13, 24], in addition to the references in [13].

Our method for transmission reconstruction has the same subjective features that made OSEM popular for
emission tomography, namely:

1. It is simple to implement—a short MATLAB program suffices for practical purposes, making our method a
strong candidate for practical adoption by the community

2. It provides orders of magnitude acceleration over basic EM schemes; in fact it improves upon the ordered
subsets schemes too

3. It can easily incorporate any type of system model

4. It can accommodate convex penalties on the likelihood without additional difficulty.

Furthermore, our method comes with somewhat more theoretical guarantees than OSEM.
At this point, we again draw the reader’s attention to the fact that modern optimization methods such as LBFGS-

B [7] generally outperform the EM based methods that are common in the transmission tomography community.
A primary reason for the popularity of the EM based methods is the experts’ familiarity with them, and the ease
of implementation. Our NMML method is extremely simple to implement (much simpler than an LBFGS-B
implementation), and can therefore serve as an easy replacement for EM based methods.
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3.2.3 Theoretical Concerns and Algorithmic Details
We just invoke our algorithm with f(x) given in (3.4). This function is clearly Lipschitz continuous, and the

remaining theoretical considerations carry over directly without additional difficulties. The most important new
component is the gradient f(x) that is computed as

[∇f(x)]j =
∑
i

aijyi −
∑
i

aijbie
−[Ax]i ,

which may be rewritten as
∇f(x) = AT (y − b̂), (3.5)

where b̂i = bie
−[Ax]i . Once again, we see that the computing the gradient requires just one Ax operation and

one ATy operation, resulting in a very efficient algorithm. We just need to replace (3.1) by (3.5) when invoking
Algorithm 1. To further optimize the running time, it might be beneficial to implement the exponentiation operation
carefully, because it will need to be performed each time the gradient is computed.

3.3 Image Restoration
Image reconstruction problems such as those arising in connection with tomography (§§3.1,3.2) are closely related
to image restoration problems. The former usually have much more complicated physical models as compared to
the latter where the inputs are usually simpler. Though the algorithmic techniques or the models used for solving
the problems can differ widely, in some formulations there are enough commonalities to permit us to handle image
restoration using our reconstruction algorithms.

Typically in image restoration problems one observes a blurred or noisy image and the aim is to recover a good
image from it. Astronomical images are furnish one important domain for the application of image restoration. In
simple terms, the observed image is assumed to be a convoluted version of the original with some added noise. In
symbols

y = Ax+ ε,

where y is the observed image, A is the blurring convolution operator, and ε is the added noise. The blurring
operator is usually not known accurately, whereby the actual problem of blind-deconvolution arises. However, for
algorithmic simplicity we assume it to be known. We remark that in more realistic scenarios the operator A may
be available in a factored form approximating a cascade of convolutions—though from an algorithmic point of
view this does not make any difference.

Image restoration (also deblurring) is a vast field in itself, with hundreds of publications. We make no attempt to
summarize the field here, and refer the reader to [16, 19] and the references therein for more details. An interesting
formulation that leads to qualitatively very different results as compared to tomographic image reconstruction is
described in the next section.

3.3.1 Maximum Entropy Image restoration
In the image restoration literature, especially for astronomy images, using maximum entropy priors / regularizers

for the objective function are quite popular. Here, a typical problem might be to estimate an image x given the
observed image y = Ax+n, while ensuring that the entropy of the reconstructed image is as high as possible. A
simple formulation is the following regularized non-negative least-squares problem

min
x≥0

1
2‖Ax− y‖

2 + β
∑
j

xj log xj . (3.6)

This problem is a regularized version of the non-negative least squares problem of [22]. However, the con-
vergence theory of that paper does not extend to the case with regularizers. Since the entropy function is not
necessarily Lipschitz continuous, and in an actual reconstruction we can have xj = 0, our convergence guarantees
do not apply out of the box either. However, we can still apply the NMML algorithm to certain cases, though a
thorough experimental validation, especially in comparison with other available software for this problem, remains
a part of our ongoing work.

For β > 0, the gradient of the objective function in (3.6) is given by

AT (Ax− y) + β(1 + logx), (3.7)
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where logx denotes the vector [log xj ]. As for PET and transmission reconstruction, the gradient (3.7) can be
computed in time O(2nz), where nz is the number of nonzero entries inA, yielding a very fast algorithm.

3.4 Miscellaneous Applications

Here we enlist some other potential applications based on simple extensions of our NMML method. We mention
these applications only briefly, and do not present experimental results on them. A closer investigation is a subject
of future work.

3.4.1 Entropy Maximization
Entropy maximization is a fundamental convex optimization problem arising in various contexts and applica-

tions. A particular instance may be written as

min f(x) =
∑

i
xi log xi

s.t. Ax ≤ b, xT1 = 1,
(3.8)

where domf = Rn++. Letting λ and ν be appropriate Lagrange multipliers, the dual to (3.8) is derived to be
(see [4, Chapter 5], for example)

min
λ≥0,ν

g(λ, ν) =
∑
i

e−[ATλ]i−ν−1 + bTλ+ ν. (3.9)

It is interesting to note that the primal problem of likelihood maximization in Transmission Tomography (3.4)
is almost the same as (3.9) above. Therefore, we can trivially adapt the algorithm derived for Transmission To-
mography to solve the constrained entropy maximization problem—with potential benefits for a large number of
problems depending on entropy maximization.

3.4.2 KL-Divergence NMA
The KL-Divergence Non-negative Matrix Approximation (NMA) problem [10, 25] attempts to solve the follow-

ing non-convex optimization problem

min KL(A;BC) =
∑
ij

aij log
aij

[BC]ij
− aij + [BC]ij

s.t. B,C ≥ 0.
(3.10)

Problem (3.10) is a difficult non-convex problem and a typical approach is to develop an alternating minimization or
descent procedure that fixesB while minimizing (or descending) overC and vice-versa. The resulting subproblem
is exactly of the form (1.3), whereby our NMML method can be used to solve it, resulting in an alternating KL
divergence based NMA algorithm. This particular approach to KL-Divergence NMA is new, and the NMML
method makes it practical.

3.4.3 Other applications
Some other applications that could benefit from our methods include:

• Fast variational inference for large-scale internet diagnosis – Platt, NIPS

• Medical imaging, e.g., image registration based on minimizing KL-divergence [18], image-intensity statistics
in magnetic resonance imaging [40], or

• Computer Vision, e.g., real-time tracking [9],

4 Experimental Results

We now provide some experimental results to demonstrate the performance of our algorithms. We begin with
some basic results for KL-Divergence minimization (1.3) on large sparse matrices (§4.1.1). Then, we show results
on simulated and real-world PET data (§4.1), followed by results on simulated data for transmission tomography
(§4.2).
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4.1 PET Experiments

To demonstrate the effectiveness of our algorithm, we compare it to the well-established methods for likelihood
maximization in PET. The algorithms that we compare are,

1. EMML – the baseline method,

2. OSEM – the accelerated version of EM [20],

3. RAMLA – a row-action algorithm [5], and

4. NMML – our non-monotonic maximum likelihood algorithm.

We highlight the fact that in PET literature, OSEM (or its derivatives) is the method of choice, and it is also the
method that is implemented in many real-world PET scanners [14]. Thus, our main competitor is OSEM.

To ensure fairness, all the algorithms were carefully implemented in MATLAB while ensuring that each one
of them exploits sparsity in the input. This point becomes even more important for algorithms like OSEM and
RAMLA because sparse matrices in MATLAB are stored in column oriented format and both OSEM and RAMLA
need to access the matrix A in a row oriented manner. Unfortunately, working with AT alone is not sufficient
for the OSEM algorithm because MATLAB does not handle the associated subset level matrix-vector operations
efficiently. Many such implementation issues are addressed in the IRT toolkit of [15]; we extracted their OSEM
implementation (and simplified it for speed) for our experiments. We also mention in passing that this toolkit
trades-off storage for speed, gaining performance at the cost of doubling the storage requirements by essentially
storing bothAT andA.

4.1.1 Experiments with sparse random matrices

In our first set of experiments we show results with large sparse random matrices to get a feeling for the behavior
of method. Dimensions of the matrices used are summarized in Table 1.

Size # nonzeros (×106) density
12288× 4096 9.12 .1812
17664× 8464 14.23 .0952
24576× 16384 23.45 .0582
30720× 25600 30.84 .0392
49152× 65536 28.86 .009
98304× 131072 89.88 .007

Table 1: Matrices used for first set of experiments

The aim of this experiment is to demonstrate the rapid convergence of our method compared to the other al-
gorithms. Another aspect is the scalability. Under both these yardsticks, our method excels on this random data.

Figure 1 shows objective function values against the running time (in seconds). We selected problems (without
loss of generality) where the true objective function was zero to permit a clearer illustration of the differences
between the methods. All algorithms were given a stopping criterion of ‖xk+1 − xk‖/‖xk‖ < 10−5, i.e., when
the relative change from one iteration to the next became small. Our NMML algorithm vastly outperforms the
other standard algorithms. For example, in the first row of plots, the NMML method is seen to converge to several
digits of accuracy more than the other methods, that too in time almost negligible in comparison.

4.1.2 Experiments on PET Phantoms

We ran some experiments using both phantom images taken from the PET-Sorteo database [32, 33]. We used
two different simulated system matrices A, of dimensions 49152 × 65536 and a density approximately 0.0069.
These sizes corresponded to 256 × 256 images that were projected into 256 radial and 192 angular bins. We
simulated one simple system matrix A using the ASPIRE toolkit [15], while the other was generated randomly.
We remark that in PET imaging, obtaining an accurate system matrixA is an entire research area [6] in itself, and
is thus not treated in this paper.
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Figure 1: Running time and convergence comparison for the various algorithms (note y-axis is logarithmic). We had to run our
own implementation of OSEM for the last experiments as the one derived from IRT [15] ran out of memory (as did RAMLA).
To aid visual presentation the plots show at most the first 500 seconds of the individual runs. MLEM and OSEM usually did
not converge to accuracies competitive with our method even after 1000 seconds.

4.1.3 Regularized reconstruction
Figure 2 shows reconstruction with the random A, and one can see that NMML achieves better results than

OSEM in the same time. Figure 3 covers a more realistic scenario and shows results of a regularized reconstruction
using A generated with ASPIRE. Again we see that the results from NMML not only look better, but also have
smaller objective function value. Both NMML and OSEM were run for the same amount of time.

4.2 Transmission Tomography
For transmission tomography, the EM approach leads to a cumbersome algorithm [24]. We compare the following
methods:

1. TRCVX – an approximate iterative algorithm of [24] that ignores the positivity constraints and computes
updates using an approximate Newton step to solve the underlying non-linear parameter update equations

2. NMML – our non-monotonic algorithm applied to the transmission problem.

We highlight the fact that for Transmission Tomography the algorithms available in the literature are more
complicated than the corresponding methods for Emission Tomography. However, our NMML method retains its
simplicity. We implemented the TRCVX method based on the iteration given in the paper [24], though we had to
add an additional projection step x ← max{0,x}, without which their proposed iteration was diverging for our
datasets.

Other methods such as the OS-SPS algorithm of [13], both of which are available in the IRT toolkit [15], remain
to be tested. We chose TRCVX because of its simplicity and scalability. For transmission we include only results
on simulated data matrices. An expanded experimental treatment, that includes penalized likelihoods will appear
in a different publication. We note in passing that our NMML method incorporates convex penalty functions
without any particular difficulty, but several of the other scalable methods, including TRCVX and OS-SPS deal
with regularization in a more ad hoc fashion leading to corresponding numerical difficulties.

We work with the same sized data matrices as mentioned in Table 1. However, the data was generated to
correspond to the Poisson model (3.2). We note that we had to normalize the projection counts y, as well as the
columns of matrixA for numerical stability.

In all our experiments, we initialized the TRCVX method with an appropriately scaled all ones vector, while
NMML was initialized using one iteration of TRCVX. We found the latter to be helpful in ensuring competitive
convergence of the method.
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Figure 2: Image reconstruction via NMML and OSEM for brain image phantoms (of size 256× 256). Noise was added to the
true image and then removed via NMML and OSEM; both algorithms ran for 20 seconds. OSEM results appear noisier than
NMML.
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Orig NMML OSEM Orig NMML OSEM

Figure 3: Regularized image reconstruction via NMML and OSEM for brain image phantoms. Regularizer was β‖x‖2 with
β = 1. Noise was added to the true image and then removed via NMML and OSEM. For each row the corresponding objective
function values are displayed on the right. NMML images are smoother, which is to be expected because of better handling of
the regularizer.
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Figure 4: Running time and convergence comparison for TRCVX and NMML (note y-axis is logarithmic). Notice that in the
last experiment, the TRCVX method essentially failed to make progress and converged to a much higher objective function
value—this behavior is easily explained because TRCVX includes hacks to make it converge.

From Figure 4 one can see that almost always NMML converges faster to the the optimum solution, though
the improvements are not as dramatic as in the case of Emission Tomography experiments (Figure 1). It is also
interesting to note that in this case, NMML exhibits much lesser non-monotonic behavior—indicating that the
amount of non-monotonicity might be related to convergence advantages. This intuition is further strengthened
by the last plot in Figure 4, where the TRCVX method fails to converge to the correct solution, while NMML
exhibits a huge non-monotonic step before converging. A theoretical investigation of the relation between the
degree of non-monotonicity and rate of convergence lies outside the scope of the analysis presented in this paper,
and remains a piece of our future work.

5 Conclusions and Future work
In this report we extended the non-monotonic optimization algorithm of [22] to the case of maximizing Poisson
likelihood and related variants. Our extension included an initial proof of convergence, under fairly simple and
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easy to satisfy assumptions. We showed application of our algorithm to Positron Emission Tomography (PET),
Transmission Tomography, and Image Restoration problems, in addition to enlisting several other important appli-
cations that can benefit from our methods.

We showed initial experimental results for our three main applications observing considerable speedups in com-
parison with standard methods for these problems. However, several important directions of future work and
extensions do remain open at this point, and we are continuing to address them as a part of of research. For
example,

• a better understanding of the convergence properties of the algorithm combined with a sharper analysis of the
rate of convergence

• scaling up the algorithm to even larger problems, e.g., by parallelization

• making the method more robust to initialization

• automatically handling ill-conditioning in the data either via regularization, preconditioning or other ap-
proaches.

• Fine-tuning our approach to each particular application mentioned in the paper, along with a more thorough
experimental validation are important facets of our ongoing work.
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